Windows Registry Attacks Cheat Sheet

The Windows Registry Editor, commonly referred to as **regedit**, is a graphical tool in the Microsoft Windows operating system that allows authorized users to view and modify the Windows registry. The registry itself is a hierarchical database that <u>stores configuration settings and</u> <u>options for the operating system, including information about hardware, software, user preferences, and system settings</u>. Here is a table summarizing the function and description of each HKEY hive in the Windows Registry:

HKEY Hive	Function and Description
HKEY_CLASSES_ROOT (HKCR)	This hive contains information about registered applications, including file associations and OLE Object Class IDs that tell Windows which programs to use for opening specific files. It merges data from HKEY_LOCAL_MACHINE\Software\Classes and HKEY_CURRENT_USER\Software\Classes, prioritizing user-specific settings over system defaults
HKEY_CURRENT_USER (HKCU)	This hive stores configuration information related to the currently logged-in user, including personalized settings like desktop background, screensavers, and application settings. It is dynamically linked to a specific subkey in HKEY_USERS that corresponds to the user
HKEY_LOCAL_MACHINE (HKLM)	This hive contains configuration data that applies to the computer regardless of who is logged in. It includes information about the system's hardware, installed software, security settings, and other system-wide settings .
HKEY_USERS (HKU)	This hive includes subkeys corresponding to each user profile on the system. Each subkey contains the same type of information as HKEY_CURRENT_USER for each user. It serves as a master list of user settings on the computer
HKEY_CURRENT_CONFIG (HKCC)	This hive c <mark>ontains information about the hardware profile</mark> that is currently in use by the system. It is used primarily for system configuration details such as which hardware profile is active

This table provides a simplified overview of the primary functions and roles of each major registry hive in the Windows operating system.

Registry hives are logical containers within the Windows Registry, designed to group related information together. Each hive contains a specific set of keys, subkeys, and values, organizing configuration data in a way that supports the management of system and user settings. Hives play a crucial role in the functioning of Windows by organizing and storing configuration data, making it easier to manage and troubleshoot system and user settings.

Here's a detailed table summarizing the top 20 different examples of **Windows Registry attacks**, outlining the purpose of each attack and providing specific details along with examples of how each is executed:

Attack Purpose	Detail of Execution	Example of Execution
<mark>Persistence</mark> of Kovter Malware	Kovter writes its code directly into the Registry to ensure it executes upon system startup.	Kovter modifies HKCU\Software\Microsoft\Windows\CurrentVersion\Run to execute its script each time the computer boots.
Malware Installation via Fake Update	A fake Adobe Flash update pop-up writes malicious code into the Registry, which then executes further harmful scripts.	A user clicks on a pop-up, leading to a Registry change at HKCU\Software\Classes\clsid that triggers malware execution.
Privilege Escalation via Service Modification	Modifies the ImagePath registry key under services to redirect a legitimate service to execute a malicious binary.	An attacker changes HKLM\System\CurrentControlSet\Services\svcname\ImagePath to point to a malicious executable.
Remote Access via RAT Installation	Installs RATs and modifies the Registry to ensure the RAT executes at every system start.	A RAT modifies HKCU\Software\Microsoft\Windows\CurrentVersion\Run to add itself, ensuring it runs on startup.

Ransomware Activation (Ryuk)	Ryuk ransomware modifies run keys to load the ransomware during system startup.	Ryuk adds a new value in HKLM\Software\Microsoft\Windows\CurrentVersion\Run to execute its encryption routine.
Anti-Forensics via System Restore Manipulation	Alters Registry settings controlling System Restore to hide malicious activities or prevent recovery from backups.	Malware modifies HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\SystemRestore to disable System Restore functionality.
<mark>Disabling</mark> Security Tools	Modifies registry keys associated with antivirus software to disable it.	Malware sets the HKLM\Software\$\$Antivirus Name]\RealTime Protection key to 0 to turn off antivirus protection.
User Logon Hijacking	Changes UserInit or Shell keys to execute malicious scripts at user logon.	Malware modifies HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit to include a malicious script.
Early Malware Execution	Adds entries to BootExecute to execute malware before the operating system fully loads.	A rootkit adds itself to HKLM\System\CurrentControlSet\Control\Session Manager\BootExecute for early system execution.

Persistence via Startup Folder	Adds links to malicious programs in the Startup folder through the Registry.	Malware adds a new entry in HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders pointing to its executable.
Fileless Malware Execution	Uses registry keys to store and execute next-step code for malware after initial deployment.	A fileless virus stores its payload in HKCU\Software\Classes\clsid and schedules execution using WMI events.
DLL Hijacking	Replaces a legitimate DLL file with a malicious one by modifying the registry to point to the bogus DLL.	An attacker modifies HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SharedDLLs to load a malicious DLL instead of the legitimate one.
Command Interception via PATH Modification	Modifies the PATH environment variable in the Registry to redirect the execution of legitimate commands to malicious executables.	Malware appends a malicious directory to HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Environment\Path.
Service Hijacking via Weak Permissions	Exploits weak permissions on service-related registry keys to launch malicious code when a service starts.	An attacker grants themselves modify permissions on HKLM\System\CurrentControlSet\Services\svcname and changes the service binary path.

Credential Dumping via SAM Keys	Dumps the Security Account Manager (SAM) database from the registry to extract password hashes.	Tools like Mimikatz modify HKLM\SYSTEM\CurrentControlSet\Control\Lsa to dump credentials stored in the SAM.
Data Hiding in Registry	Stores malicious payloads in the Registry to evade detection by signature-based security software.	Malware hides its data in HKCU\Software\Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache.
Lateral Movement Preparation	Modifies or deletes registry keys to disrupt normal system operations or to prepare the system for further attacks.	An attacker deletes HKLM\Software\Policies\Microsoft\WindowsFirewall\DomainProfil e to disable firewall rules before moving laterally.
Information Gathering via Registry	Remotely queries the registry to gather information about installed remote access tools.	An external script queries HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall to find installed software for exploitation.
Evading Application Whitelisting	Uses the registry to bypass application whitelisting by modifying keys that control which applications can run.	Malware modifies HKLM\SOFTWARE\Policies\Microsoft\Windows\Safer\CodeIdentifier s to whitelist its executable.
Malware Configuration Storage	Stores configuration settings for malware in the Registry to maintain flexibility and stealth.	A Trojan stores its C&C server addresses in HKCU\Software\$\$Malware Name]\Settings to dynamically update its behavior.

This table provides a comprehensive overview of the diverse and sophisticated ways in which attackers can leverage the Windows Registry to conduct malicious activities, emphasizing the need for vigilant monitoring and robust security measures to protect against such threats.