
WireShark 1

WireShark
Export Objects (Files)
Wireshark can extract files transferred through the wire. For a security analyst, it
is vital to discover shared files and save them for further investigation. Exporting
objects are available only for selected protocol's streams (DICOM, HTTP, IMF,
SMB and TFTP).

Time Display Format
Wireshark lists the packets as they are captured, so investigating the default flow
is not always the best option. By default, Wireshark shows the time in "Seconds
Since Beginning of Capture", the common usage is using the UTC Time Display
Format for a better view. You can use the "View --> Time Display Format" menu
to change the time display format.

WireShark 2

Expert Info
Wireshark also detects specific states of protocols to help analysts easily spot
possible anomalies and problems. Note that these are only suggestions, and
there is always a chance of having false positives/negatives. Expert info can
provide a group of categories in three different severities. Details are shown in
the table below.

Severity Colour Info

Chat Blue Information on usual workflow.

Note Cyan Notable events like application error codes.

Warn Yellow
Warnings like unusual error codes or problem
statements.

Error Red Problems like malformed packets.

WireShark 3

Frequently encountered information groups are listed in the table below. You can
refer to Wireshark's official documentation for more information on the expert
information entries.

Group Info Group Info

Checksum Checksum errors. Deprecated
Deprecated protocol
usage.

Comment
Packet comment
detection.

Malformed
Malformed packet
detection.

Apply as Filter
This is the most basic way of filtering traffic. While investigating a capture file, you
can click on the field you want to filter and use the "right-click menu"
or "Analyse --> Apply as Filter" menu to filter the specific value. Once you
apply the filter, Wireshark will generate the required filter query, apply it, show the
packets according to your choice, and hide the unselected packets from the
packet list pane. Note that the number of total and displayed packets are always
shown on the status bar.

WireShark 4

Conversation filter
"Conversation Filter" option helps you view only the related packets and hide
the rest of the packets easily. You can use the"right-click menu" or "Analyse -
-> Conversation Filter" menu to filter conversations.

Colourise Conversation
This option is similar to the "Conversation Filter" with one difference. It
highlights the linked packets without applying a display filter and decreasing
the number of viewed packets. This option works with the "Colouring Rules"
option ad changes the packet colours without considering the previously
applied colour rule. You can use the "right-click menu" or "View -->
Colourise Conversation" menu to colourise a linked packet in a single click.
Note that you can use the "View --> Colourise Conversation --> Reset
Colourisation" menu to undo this operation.

WireShark 5

Prepare as Filter
Similar to "Apply as Filter", this option helps analysts create display filters using
the "right-click" menu. However, unlike the previous one, this model doesn't
apply the filters after the choice. It adds the required query to the pane and
waits for the execution command (enter) or another chosen filtering option by
using the ".. and/or.." from the "right-click menu".

WireShark 6

Apply as Column
By default, the packet list pane provides basic information about each
packet. You can use the "right-click menu" or "Analyse --> Apply as
Column" menu to add columns to the packet list pane. Once you click on a value
and apply it as a column, it will be visible on the packet list pane. This function
helps analysts examine the appearance of a specific value/field across the
available packets in the capture file. You can enable/disable the columns shown
in the packet list pane by clicking on the top of the packet list pane.

WireShark 7

Follow Stream

Wireshark displays everything in packet portion size. However, it is possible to
reconstruct the streams and view the raw traffic as it is presented at the
application level. Following the protocol, streams help analysts recreate the
application-level data and understand the event of interest. It is also possible to
view the unencrypted protocol data like usernames, passwords and other
transferred data.

You can use the"right-click menu" or "Analyse --> Follow TCP/UDP/HTTP
Stream" menu to follow traffic streams. Streams are shown in a separate
dialogue box; packets originating from the server are highlighted with blue, and
those originating from the client are highlighted with red.

Once you follow a stream, Wireshark automatically creates and applies the
required filter to view the specific stream. Remember, once a filter is applied, the
number of the viewed packets will change. You will need to use the "X button"
located on the right upper side of the display filter bar to remove the display filter
and view all available packets in the capture file.

Statistics
This menu provides multiple statistics options ready to investigate to help
users see the big picture in terms of the scope of the traffic, available
protocols, endpoints and conversations, and some protocol-specific details
like DHCP, DNS and HTTP/2. For a security analyst, it is crucial to know how
to utilise the statical information. This section provides a quick summary of
the processed pcap, which will help analysts create a hypothesis for an
investigation. You can use the "Statistics" menu to view all available

WireShark 8

options. Now start the given VM, open the Wireshark, load the
"Exercise.pcapng" file and go through the walkthrough.

Resolved Addresses
This option helps analysts identify IP addresses and DNS names available in the
capture file by providing the list of the resolved addresses and their hostnames.
Note that the hostname information is taken from DNS answers in the capture
file. Analysts can quickly identify the accessed resources by using this menu.
Thus they can spot accessed resources and evaluate them according to the
event of interest. You can use the "Statistics --> Resolved Addresses" menu to
view all resolved addresses by Wireshark.

Protocol Hierarchy
This option breaks down all available protocols from the capture file and helps
analysts view the protocols in a tree view based on packet counters and
percentages. Thus analysts can view the overall usage of the ports and services
and focus on the event of interest. The golden rule mentioned in the previous
room is valid in this section; you can right-click and filter the event of interest. You
can use the "Statistics --> Protocol Hierarchy" menu to view this info.

WireShark 9

Conversations
Conversation represents traffic between two specific endpoints. This option
provides the list of the conversations in five base formats; ethernet, IPv4,
IPv6, TCP and UDP. Thus analysts can identify all conversations and contact
endpoints for the event of interest. You can use the "Statistic -->
Conversations" menu to view this info.

WireShark 10

Endpoints
The endpoints option is similar to the conversations option. The only difference is
that this option provides unique information for a single information field
(Ethernet, IPv4, IPv6, TCP and UDP). Thus analysts can identify the unique
endpoints in the capture file and use it for the event of interest. You can use
the "Statistics --> Endpoints" menu to view this info.

Wireshark also supports resolving MAC addresses to human-readable format
using the manufacturer name assigned by IEEE. Note that this conversion is
done through the first three bytes of the MAC address and only works for the
known manufacturers. When you review the ethernet endpoints, you can activate
this option with the "Name resolution" button in the lower-left corner of the
endpoints window.

WireShark 11

Name resolution is not limited only to MAC addresses. Wireshark provides IP
and port name resolution options as well. However, these options are not
enabled by default.

If you want to use these functionalities, you need to activate them
through the "Edit --> Preferences --> Name Resolution" menu. Once
you enable IP and port name resolution, you will see the resolved IP
address and port names in the packet list pane and also will be able to
view resolved names in the "Conversations" and "Endpoints" menus as
well.

WireShark 12

Endpoint menu view with name resolution:

Besides name resolution, Wireshark also provides an IP geolocation
mapping that helps analysts identify the map's source and destination

WireShark 13

addresses.

But this feature is not activated by default and needs supplementary data
like the GeoIP database. Currently, Wireshark supports MaxMind databases,
and the latest versions of the Wireshark come configured MaxMind DB
resolver. However, you still need MaxMind DB files and provide the database
path to Wireshark by using the "Edit --> Preferences --> Name Resolution -->
MaxMind database directories" menu. Once you download and indicate the
path, Wireshark will automatically provide GeoIP information under the IP
protocol details for the matched IP addresses.

Endpoints and GeoIP view.

IPv4 and IPv6

WireShark 14

Up to here, almost all options provided information that contained both versions
of the IP addresses. The statistics menu has two options for narrowing the
statistics on packets containing a specific IP version. Thus, analysts can identify
and list all events linked to specific IP versions in a single window and use it for
the event of interest. You can use the "Statistics --> IPvX Statistics" menu to
view this info.

DNS
This option breaks down all DNS packets from the capture file and helps analysts
view the findings in a tree view based on packet counters and percentages of the
DNS protocol. Thus analysts can view the DNS service's overall usage, including
rcode, opcode, class, query type, service and query stats and use it for the event
of interest. You can use the "Statistics --> DNS" menu to view this info.

WireShark 15

HTTP
This option breaks down all HTTP packets from the capture file and helps
analysts view the findings in a tree view based on packet counters and
percentages of the HTTP protocol. Thus analysts can view the HTTP service's
overall usage, including request and response codes and the original
requests. You can use the "Statistics --> HTTP" menu to view this info.

WireShark 16

Bookmarks and Filtering Buttons
We've covered different types of filtering options, operators and functions. It is
time to create filters and save them as bookmarks and buttons for later usage. As
mentioned in the previous task, the filter toolbar has a filter bookmark section to
save user-created filters, which helps analysts re-use favourite/complex filters
with a couple of clicks. Similar to bookmarks, you can create filter buttons ready
to apply with a single click.

Creating and using bookmarks.

WireShark 17

Creating and using display filter buttons.

WireShark 18

Profiles
Wireshark is a multifunctional tool that helps analysts to accomplish in-depth
packet analysis. As we covered during the room, multiple preferences need to be
configured to analyse a specific event of interest. It is cumbersome to re-change
the configuration for each investigation case, which requires a different set of
colouring rules and filtering buttons. This is where Wireshark profiles come into
play. You can create multiple profiles for different investigation cases and use
them accordingly. You can use the "Edit --> Configuration Profiles" menu or
the "lower right bottom of the status bar --> Profile" section to create, modify
and change the profile configuration.

Packet Filtering

Capture Filters
This type of filter is used to save only a specific part of the traffic. It is
set before capturing traffic and not changeable during the capture.

Display Filters
This type of filter is used to investigate packets by reducing the number
of visible packets, and it is changeable during the capture.

Note: You cannot use the display filter expressions for capturing traffic and vice
versa.

WireShark 19

The typical use case is capturing everything and filtering the packets according to
the event of interest. Only experienced professionals use capture filters and sniff
traffic. This is why Wireshark supports more protocol types in display filters.

Capture Filter Syntax
These filters use byte offsets hex values and masks with boolean operators,
and it is not easy to understand/predict the filter's purpose at first glance. The
base syntax is explained below:

Scope: host, net, port and portrange.

Direction: src, dst, src or dst, src and dst,

Protocol: ether, wlan, ip, ip6, arp, rarp, tcp and udp.

Sample filter to capture port 80 traffic: tcp port 80

You can read more on capture filter syntax from here and here. A quick
reference is available under the "Capture --> Capture Filters" menu.

Display Filter Syntax
This is Wireshark's most powerful feature. It supports 3000 protocols and
allows conducting packet-level searches under the protocol breakdown. The
official "Display Filter Reference" provides all supported protocols breakdown
for filtering.

Sample filter to capture port 80 traffic: tcp.port == 80

Wireshark has a built-in option (Display Filter Expression) that stores all
supported protocol structures to help analysts create display filters. We will
cover the "Display Filter Expression" menu later. Now let's understand the

WireShark 20

fundamentals of the display filter operations. A quick reference is available
under the "Analyse --> Display Filters" menu.

Comparison Operators

You can create display filters by using different comparison operators to find
the event of interest. The primary operators are shown in the table below.

English C-Like Description Example

eq == Equal
ip.src ==
10.10.10.100

ne != Not equal
ip.src !=
10.10.10.100

gt > Greater than ip.ttl > 250

lt < Less Than ip.ttl < 10

ge >=
Greater than or equal
to

ip.ttl >= 0xFA

le <= Less than or equal to ip.ttl <= 0xA

Note: Wireshark supports decimal and hexadecimal values in filtering. You
can use any format you want according to the search you will conduct.

Logical Expressions

Wireshark supports boolean syntax. You can create display filters by using
logical operators as well.

English C-Like Description Example

and && Logical AND
(ip.src == 10.10.10.100) AND
(ip.src == 10.10.10.111)

or || Logical OR
(ip.src == 10.10.10.100) OR
(ip.src == 10.10.10.111)

WireShark 21

not ! Logical NOT !(ip.src == 10.10.10.222)

Note: Usage of !=value is
deprecated; using it could
provide inconsistent results.
Using the !(value) style is
suggested for more
consistent results.

Packet Filter Toolbar
The filter toolbar is where you create and apply your display filters. It is a
smart toolbar that helps you create valid display filters with ease. Before
starting to filter packets, here are a few tips:

Packet filters are defined in lowercase.

Packet filters have an autocomplete feature to break down protocol
details, and each detail is represented by a "dot".

Packet filters have a three-colour representation explained below.

Green Valid filter

Red Invalid filter

Yellow
Warning filter. This filter works, but it is unreliable, and it is
suggested to change it with a valid filter.

Protocol Filters
As mentioned in the previous task, Wireshark supports 3000 protocols and
allows packet-level investigation by filtering the protocol fields. This task
shows the creation and usage of filters against different protocol fields.

IP Filters
IP filters help analysts filter the traffic according to the IP level information
from the packets (Network layer of the OSI model). This is one of the most
commonly used filters in Wireshark. These filters filter network-level

WireShark 22

information like IP addresses, version, time to live, type of service, flags, and
checksum values.

The common filters are shown in the given table.

Filter Description

ip Show all IP packets.

ip.addr ==
10.10.10.111 Show all packets containing IP address 10.10.10.111.

ip.addr ==
10.10.10.0/24

Show all packets containing IP addresses from 10.10.10.0/24
subnet.

ip.src == 10.10.10.111 Show all packets originated from 10.10.10.111

ip.dst == 10.10.10.111 Show all packets sent to 10.10.10.111

ip.addr vs ip.src/ip.dst
Note: The ip.addr filters the traffic without considering the
packet direction. The ip.src/ip.dst filters the packet depending
on the packet direction.

TCP
TCP filters help analysts filter the traffic according to protocol-level information
from the packets (Transport layer of the OSI model). These filters filter
transport protocol level information like source and destination ports,
sequence number, acknowledgement number, windows size, timestamps,
flags, length and protocol errors.

Filter Description Filter Expression

tcp.port == 80 Show all TCP packets udp.port == 53 Show

WireShark 23

with port 80 all UDP packets
with port 53

tcp.srcport ==
1234

Show all TCP packets
originating from port 1234

udp.srcport ==
1234

Show
all UDP packets
originating from
port 1234

tcp.dstport ==
80

Show all TCP packets
sent to port 80

udp.dstport ==
5353

Show
all UDP packets
sent to port 5353

Application Level Protocol Filters | and DNS
Application-level protocol filters help analysts filter the traffic according to
application protocol level information from the packets (Application layer of
the OSI model). These filters filter application-specific information, like
payload and linked data, depending on the protocol type.

Filter Description Filter Description

http
Show
all HTTP packets

dns
Show
all DNS packets

http.response.code
== 200

Show all packets
with HTTP response
code "200"

dns.flags.response
== 0

Show
all DNS requests

http.request.method
== "GET"

Show all HTTP GET
requests

dns.flags.response
== 1

Show
all DNS responses

http.request.method
== "POST"

Show
all HTTP POST
requests

dns.qry.type == 1
Show all DNS "A"
records

WireShark 24

Display Filter Expressions
Wireshark has a built-in option (Display Filter Expression) that stores all
supported protocol structures to help analysts create display filters. When
an analyst can't recall the required filter for a specific protocol or is unsure
about the assignable values for a filter, the Display Filter Expressions
menu provides an easy-to-use display filter builder guide. It is available
under the "Analyse --> Display Filter Expression" menu.

WireShark 25

Advanced Filtering
So far, you have learned the basics of packet filtering operations. Now it is time to
focus on specific packet details for the event of interest. Besides the operators
and expressions covered in the previous room, Wireshark has advanced
operators and functions. These advanced filtering options help the analyst
conduct an in-depth analysis of an event of interest.

Filter: "contains"

Filter contains

Type Comparison Operator

Description
Search a value inside packets. It is case-sensitive and provides similar
functionality to the "Find" option by focusing on a specific field.

Example Find all "Apache" servers.

Workflow
List all HTTP packets where packets' "server" field contains the
"Apache" keyword.

Usage http.server contains "Apache"

Filter: "matches"

Filter matches

WireShark 26

Type Comparison Operator

Description
Search a pattern of a regular expression. It is case insensitive, and
complex queries have a margin of error.

Example Find all .php and .html pages.

Workflow
List all HTTP packets where packets' "host" fields match keywords
".php" or ".html".

Usage http.host matches "\.(php|html)"

Filter: "in"

Filter in

Type Set Membership

Description Search a value or field inside of a specific scope/range.

Example Find all packets that use ports 80, 443 or 8080.

Workflow
List all TCP packets where packets' "port" fields have values 80, 443 or
8080.

Usage tcp.port in {80 443 8080}

WireShark 27

Filter: "upper"

Filter upper

Type Function

Description Convert a string value to uppercase.

Example Find all "APACHE" servers.

Workflow
Convert all HTTP packets' "server" fields to uppercase and list packets
that contain the "APACHE" keyword.

Usage upper(http.server) contains "APACHE"

WireShark 28

Filter: "lower"

Filter lower

Type Function

Description Convert a string value to lowercase.

Example Find all "apache" servers.

Workflow
Convert all HTTP packets' "server" fields info to lowercase and list
packets that contain the "apache" keyword.

Usage lower(http.server) contains "apache"

WireShark 29

Filter: "string"

Filter string

Type Function

Description Convert a non-string value to a string.

Example Find all frames with odd numbers.

Workflow
Convert all "frame number" fields to string values, and list frames end
with odd values.

Usage string(frame.number) matches "[13579]$"

WireShark 30

Wireshark: Traffic Analysis
Nmap Scans
Nmap is an industry-standard tool for mapping networks, identifying live hosts
and discovering the services. As it is one of the most used network scanner tools,
a security analyst should identify the network patterns created with it. This
section will cover identifying the most common Nmap scan types.

TCP connect scans

SYN scans

UDP scans

It is essential to know how Nmap scans work to spot scan activity on the
network. However, it is impossible to understand the scan details without using
the correct filters. Below are the base filters to probe Nmap scan behaviour on
the network.

TCP flags in a nutshell.

Notes Wireshark Filters

Global search. • tcp • udp

WireShark 31

• Only SYN flag. • SYN flag is
set. The rest of the bits are
not important.

• tcp.flags == 2 • tcp.flags.syn == 1

• Only ACK flag. • ACK flag is
set. The rest of the bits are
not important.

• tcp.flags == 16 • tcp.flags.ack == 1

• Only SYN, ACK flags. • SYN
and ACK are set. The rest of
the bits are not important.

• tcp.flags == 18 • (tcp.flags.syn == 1) and (tcp.flags.ack
== 1)

• Only RST flag. • RST flag is
set. The rest of the bits are
not important.

• tcp.flags == 4 • tcp.flags.reset == 1

• Only RST, ACK flags. • RST
and ACK are set. The rest of
the bits are not important.

• tcp.flags == 20 • (tcp.flags.reset == 1) and (tcp.flags.ack
== 1)

• Only FIN flag • FIN flag is
set. The rest of the bits are
not important.

• tcp.flags == 1 • tcp.flags.fin == 1

TCP
TCP Connect Scan in a nutshell:

Relies on the three-way handshake (needs to finish the handshake process).

Usually conducted with nmap -sT command.

Used by non-privileged users (only option for a non-root user).

Usually has a windows size larger than 1024 bytes as the request expects
some data due to the nature of the protocol.

Open TCP Port Open TCP Port Closed TCP Port

• SYN --> • <-- SYN,
ACK • ACK -->

• SYN --> • <-- SYN, ACK • ACK --> • RST,
ACK -->

• SYN --> • <-- RST,
ACK

The images below show the three-way handshake process of the open and
close TCP ports. Images and pcap samples are split to make the investigation
easier and understand each case's details.

Open TCP port (Connect):

WireShark 32

Closed TCP port (Connect):

The above images provide the patterns in isolated traffic. However, it is not
always easy to spot the given patterns in big capture files. Therefore analysts
need to use a generic filter to view the initial anomaly patterns, and then it will be
easier to focus on a specific traffic point.

The given filter shows the TCP Connect scan patterns in a capture file.

tcp.flags.syn==1 and tcp.flags.ack==0 and tcp.window_size > 1024

SYN Scans
TCP SYN Scan in a nutshell:

Doesn't rely on the three-way handshake (no need to finish the handshake
process).

Usually conducted with nmap -sS command.

Used by privileged users.

Usually have a size less than or equal to 1024 bytes as the request is not
finished and it doesn't expect to receive data.

Open TCP Port Close TCP Port

WireShark 33

• SYN --> • <-- SYN,ACK • RST--> • SYN --> • <-- RST,ACK

Open TCP port (SYN):

Closed TCP port (SYN):

The given filter shows the TCP SYN scan patterns in a capture file.

tcp.flags.syn==1 and tcp.flags.ack==0 and tcp.window_size <= 1024

UDP
UDP Scan in a nutshell:

Doesn't require a handshake process

No prompt for open ports

ICMP error message for close ports

Usually conducted with nmap -sU command.

Open UDP Port Closed UDP Port

• UDP packet -->
• UDP packet --> • ICMP Type 3, Code 3 message. (Destination
unreachable, port unreachable)

WireShark 34

Closed (port no 69) and open (port no 68) UDP ports:

The above image shows that the closed port returns an ICMP error packet. No
further information is provided about the error at first glance, so how can an
analyst decide where this error message belongs?

The ICMP error message uses the original request as encapsulated data to
show the source/reason of the packet. Once you expand the ICMP section in
the packet details pane, you will see the encapsulated data and the original
request, as shown in the below image.

WireShark 35

The given filter shows the UDP scan patterns in a capture file.

icmp.type==3 and icmp.code==3

WireShark 36

ARP Poisoning & Man In The Middle!
ARP protocol, or Address Resolution Protocol (ARP), is the technology
responsible for allowing devices to identify themselves on a network.

Address Resolution Protocol Poisoning (also known as ARP Spoofing or
Man In The Middle (MITM) attack) is a type of attack that involves network
jamming/manipulating by sending malicious ARP packets to the default
gateway. The ultimate aim is to manipulate the "IP to MAC address
table" and sniff the traffic of the target host.

There are a variety of tools available to conduct ARP attacks. However, the
mindset of the attack is static, so it is easy to detect such an attack by knowing
the ARP protocol workflow and Wireshark skills.

ARP analysis in a nutshell:

Works on the local network

Enables the communication between MAC addresses

Not a secure protocol

Not a routable protocol

It doesn't have an authentication function

Common patterns are request & response, announcement and gratuitous
packets.

Before investigating the traffic, let's review some legitimate and
suspicious ARP packets. The legitimate requests are similar to the shown
picture: a broadcast request that asks if any of the available hosts use an IP
address and a reply from the host that uses the particular IP address.

Notes Wireshark filter

Global search • arp

"ARP" options for grabbing the low-
hanging fruits: • Opcode
1: ARP requests. • Opcode
2: ARP responses. • Hunt: Arp
scanning •
Hunt: Possible ARP poisoning
detection •
Hunt: Possible ARP flooding from
detection:

• arp.opcode == 1 • arp.opcode == 2 •
arp.dst.hw_mac==00:00:00:00:00:00 • arp.duplicate-
address-detected or arp.duplicate-address-frame •
((arp) && (arp.opcode == 1)) && (arp.src.hw_mac ==
target-mac-address)

WireShark 37

A suspicious situation means having two different ARP responses
(conflict) for a particular IP address.

In that case, Wireshark's expert info tab warns the analyst. However, it only
shows the second occurrence of the duplicate value to highlight the conflict.
Therefore, identifying the malicious packet from the legitimate one is the
analyst's challenge. A possible IP spoofing case is shown in the picture
below.

WireShark 38

Here, knowing the network architecture and inspecting the traffic for a specific
time frame can help detect the anomaly. As an analyst, you should take notes of
your findings before going further. This will help you be organised and make it
easier to correlate the further findings.

Look at the given picture; there is a conflict; the MAC address that ends with "b4"
crafted an ARP request with the "192.168.1.25" IP address, then claimed to have
the "192.168.1.1" IP address.

Notes Detection Notes Findings

Possible IP address
match.

1 IP address announced from
a MAC address.

• MAC:
00:0c:29:e2:18:b4
• IP: 192.168.1.25

Possible ARP spoofing
attempt.

2 MAC addresses claimed the same IP
address (192.168.1.1). The "192.168.1.1"
IP address is a possible gateway address.

• MAC1:
50:78:b3:f3:cd:f4
• MAC 2:
00:0c:29:e2:18:b4

Possible ARP flooding
attempt.

The MAC address that ends with "b4"
claims to have a different/new IP
address.

• MAC:
00:0c:29:e2:18:b4
• IP: 192.168.1.1

Let's keep inspecting the traffic to spot any other anomalies. Note that the case is
split into multiple capture files to make the investigation easier.

At this point, it is evident that there is an anomaly. A security analyst cannot
ignore a flood of ARP requests. This could be malicious activity, scan or network
problems. There is a new anomaly; the MAC address that ends with "b4" crafted
multiple ARP requests with the "192.168.1.25" IP address. Let's focus on the
source of this anomaly and extend the taken notes.

WireShark 39

Notes Detection Notes Findings

Possible IP address
match.

1 IP address announced from
a MAC address.

• MAC:
00:0c:29:e2:18:b4 • IP:
192.168.1.25

Possible ARP spoofing
attempt.

2 MAC addresses claimed the same
IP address (192.168.1.1).The "
192.168.1.1" IP address is a possible
gateway address.

• MAC1:
50:78:b3:f3:cd:f4 •
MAC 2:
00:0c:29:e2:18:b4

Possible ARP spoofing
attempt.

The MAC address that ends with "b4"
claims to have a different/new IP
address.

•
MAC: 00:0c:29:e2:18:b4
• IP: 192.168.1.1

Possible ARP flooding
attempt.

The MAC address that ends with "b4"
crafted multiple ARP requests against
a range of IP addresses.

• MAC:
00:0c:29:e2:18:b4 • IP:
192.168.1.xxx

Up to this point, it is evident that the MAC address that ends with "b4" owns the
"192.168.1.25" IP address and crafted suspicious ARP requests against a range
of IP addresses. It also claimed to have the possible gateway address as well.
Let's focus on other protocols and spot the reflection of this anomaly in the
following sections of the time frame.

There is HTTP traffic, and everything looks normal at the IP level, so there is no
linked information with our previous findings. Let's add the MAC addresses as
columns in the packet list pane to reveal the communication behind the IP
addresses.

WireShark 40

One more anomaly! The MAC address that ends with "b4" is the destination of all
HTTP packets! It is evident that there is a MITM attack, and the attacker is the
host with the MAC address that ends with "b4". All traffic linked to "192.168.1.12"
IP addresses is forwarded to the malicious host. Let's summarise the findings
before concluding the investigation.

Detection Notes Findings

IP to MAC matches. 3 IP to MAC address matches.

Attacker The attacker created noise with ARP packets.

Router/gateway Gateway address.

Victim The attacker sniffed all traffic of the victim.

Detecting these bits and pieces of information in a big capture file is challenging.
However, in real-life cases, you will not have "tailored data" ready for
investigation. Therefore you need to have the analyst mindset, knowledge and
tool skills to filter and detect the anomalies.

Identifying Hosts: DHCP, NetBIOS and Kerberos

Identifying Hosts
When investigating a compromise or malware infection activity, a security
analyst should know how to identify the hosts on the network apart from IP
to MAC address match.

One of the best methods is identifying the hosts and users on the network to
decide the investigation's starting point and list the hosts and users
associated with the malicious traffic/activity.

Usually, enterprise networks use a predefined pattern to name users and
hosts.

While this makes knowing and following the inventory easier, it has good and bad
sides. The good side is that it will be easy to identify a user or host by looking at
the name. The bad side is that it will be easy to clone that pattern and live in the
enterprise network for adversaries. There are multiple solutions to avoid these
kinds of activities, but for a security analyst, it is still essential to have host and
user identification skills.

Protocols that can be used in Host and User identification:

Dynamic Host Configuration Protocol (DHCP) traffic

WireShark 41

NetBIOS (NBNS) traffic

Kerberos traffic

DHCP
Dynamic Host Configuration Protocol (DHCP), is the technology responsible for
managing automatic IP address and required communication parameters
assignment.

DHCP investigation in a nutshell:

Notes Wireshark Filter

Global search. • dhcp or bootp

Filtering the proper DHCP packet options is vital to
finding an event of interest. • "DHCP
Request" packets contain the hostname information •
"DHCP ACK" packets represent the accepted
requests • "DHCP NAK" packets represent denied
requests Due to the nature of the protocol, only
"Option 53" (request type) has predefined static
values. You should filter the packet type first, and then
you can filter the rest of the options by "applying as
column" or use the advanced filters like "contains" and
"matches".

• Request: dhcp.option.dhcp == 3
• ACK: dhcp.option.dhcp == 5 •
NAK: dhcp.option.dhcp == 6

"DHCP Request" options for grabbing the low-
hanging fruits: • Option 12: Hostname. • Option
50: Requested IP address. • Option 51: Requested IP
lease time. • Option 61: Client's MAC address.

• dhcp.option.hostname contains
"keyword"

"DHCP ACK" options for grabbing the low-hanging
fruits: • Option 15: Domain name. • Option
51: Assigned IP lease time.

• dhcp.option.domain_name contains
"keyword"

"DHCP NAK" options for grabbing the low-hanging
fruits: • Option 56: Message (rejection details/reason).

As the message could be unique
according to the case/situation, It
is suggested to read the
message instead of filtering it.
Thus, the analyst could create a
more reliable hypothesis/result
by understanding the event
circumstances.

WireShark 42

NetBIOS (NBNS) Analysis
NetBIOS or Network Basic Input/Output System is the technology responsible for
allowing applications on different hosts to communicate with each other.

NBNS investigation in a nutshell:

Notes Wireshark Filter

Global search. • nbns

"NBNS" options for grabbing the low-hanging fruits: •
Queries: Query details. • Query details could
contain "name, Time to live (TTL) and IP address details"

• nbns.name contains
"keyword"

NetBIOS registration requests nbns.flags.opcode == 5

WireShark 43

Kerberos Analysis
Kerberos is the default authentication service for Microsoft Windows
domains.

It is responsible for authenticating service requests between two or more
computers over the untrusted network. The ultimate aim is to prove identity
securely.

Kerberos investigation in a nutshell:

Notes Wireshark Filter

Global search. • kerberos

User account search: • CNameString: The username. Note: Some
packets could provide hostname information in this field. To avoid
this confusion, filter the "$" value. The values end with "$" are
hostnames, and the ones without it are user names.

•
kerberos.CNameString

contains "keyword" •
kerberos.CNameString
and !
(kerberos.CNameString
contains "$")

"Kerberos" options for grabbing the low-hanging fruits: •
pvno: Protocol version. • realm: Domain name for the generated
ticket. • sname: Service and domain name for the generated ticket.
• addresses: Client IP address and NetBIOS name. Note: the
"addresses" information is only available in request packets.

• kerberos.pvno == 5
• kerberos.realm
contains ".org" •
kerberos.SNameString
== "krbtg"

WireShark 44

Tunneling Traffic: DNS and ICMP

Tunnelling Traffic: ICMP and DNS
Traffic tunnelling is (also known as "port forwarding") transferring the
data/resources in a secure method to network segments and zones.

It can be used for "internet to private networks" and "private networks to
internet" flow/direction.

There is an encapsulation process to hide the data, so the transferred data
appear natural for the case, but it contains private data packets and transfers
them to the final destination securely.

Tunnelling provides anonymity and traffic security. Therefore it is highly used by
enterprise networks. However, as it gives a significant level of data encryption,
attackers use tunnelling to bypass security perimeters using the standard and
trusted protocols used in everyday traffic like ICMP and DNS. Therefore, for a
security analyst, it is crucial to have the ability to spot ICMP and DNS anomalies.

ICMP Analysis
Internet Control Message Protocol (ICMP) is designed for diagnosing and
reporting network communication issues. It is highly used in error reporting
and testing.

As it is a trusted network layer protocol, sometimes it is used for denial of
service (DoS) attacks; also, adversaries use it in data exfiltration and C2

WireShark 45

tunnelling activities.

ICMP analysis in a nutshell:
Usually, ICMP tunnelling attacks are anomalies appearing/starting after a
malware execution or vulnerability exploitation.

As the ICMP packets can transfer an additional data payload, adversaries
use this section to exfiltrate data and establish a C2 connection.

It could be a TCP, HTTP or SSH data. As the ICMP protocols provide a great
opportunity to carry extra data, it also has disadvantages.

Most enterprise networks block custom packets or require administrator
privileges to create custom ICMP packets.

A large volume of ICMP traffic or anomalous packet sizes are indicators of ICMP
tunnelling. Still, the adversaries could create custom packets that match the
regular ICMP packet size (64 bytes), so it is still cumbersome to detect these
tunnelling activities. However, a security analyst should know the normal and the
abnormal to spot the possible anomaly and escalate it for further analysis.

Notes Wireshark filters

Global search • icmp

"ICMP" options for grabbing the low-hanging fruits: • Packet length. •
ICMP destination addresses. • Encapsulated protocol signs in
ICMP payload.

• data.len > 64
and icmp

WireShark 46

DNS Analysis
Domain Name System (DNS) is designed to translate/convert IP domain
addresses to IP addresses.

It is also known as a phonebook of the internet. As it is the essential part of
web services, it is commonly used and trusted, and therefore often ignored.
Due to that, adversaries use it in data exfiltration and C2 activities.

DNS analysis in a nutshell:
Similar to ICMP tunnels, DNS attacks are anomalies appearing/starting after
a malware execution or vulnerability exploitation.

Adversary creates (or already has) a domain address and configures it as a
C2 channel. The malware or the commands executed after exploitation
sends DNS queries to the C2 server.

However, these queries are longer than default DNS queries and crafted
for subdomain addresses. Unfortunately, these subdomain addresses are not
actual addresses; they are encoded commands as shown below:

"encoded-commands.maliciousdomain.com"

When this query is routed to the C2 server, the server sends the actual
malicious commands to the host.

As the DNS queries are a natural part of the networking activity, these
packets have the chance of not being detected by network perimeters. A
security analyst should know how to investigate the DNS packet lengths and
target addresses to spot these anomalies.

Notes
Wireshark
Filter

Global search • dns

"DNS" options for grabbing the low-hanging fruits: • Query length. •
Anomalous and non-regular names in DNS addresses. •
Long DNS addresses with encoded subdomain addresses. •
Known patterns like dnscat and dns2tcp. • Statistical analysis like the
anomalous volume of DNS requests for a particular target.
!mdns: Disable local link device queries.

• dns contains
"dnscat" •
dns.qry.name.len
> 15 and !mdns

WireShark 47

Cleartext Protocol Analysis: FTP

Cleartext Protocol Analysis
Investigating cleartext protocol traces sounds easy, but when the time comes to
investigate a big network trace for incident analysis and response, the game
changes. Proper analysis is more than following the stream and reading the
cleartext data. For a security analyst, it is important to create statistics and key
results from the investigation process. As mentioned earlier at the beginning of
the Wireshark room series, the analyst should have the required network
knowledge and tool skills to accomplish this. Let's simulate a cleartext protocol
investigation with Wireshark!

FTP Analysis
File Transfer Protocol (FTP) is designed to transfer files with ease, so it focuses
on simplicity rather than security. As a result of this, using this protocol in
unsecured environments could create security issues like:

MITM attacks

Credential stealing and unauthorised access

Phishing

WireShark 48

Malware planting

Data exfiltration

FTP analysis in a nutshell:

Notes Wireshark Filter

Global search • ftp

"FTP" options for grabbing the low-hanging fruits: •
x1x series: Information request responses. • x2x
series: Connection messages. • x3x
series: Authentication messages. Note: "200"
means command successful.

"x1x" series options for grabbing the low-hanging
fruits: • 211: System status. • 212: Directory status.
• 213: File status

• ftp.response.code == 211

"x2x" series options for grabbing the low-hanging
fruits: • 220: Service ready. • 227: Entering passive
mode. • 228: Long passive mode. • 229: Extended
passive mode.

• ftp.response.code == 227

"x3x" series options for grabbing the low-hanging
fruits: • 230: User login. • 231: User logout. •
331: Valid username. • 430: Invalid username or
password • 530: No login, invalid password.

• ftp.response.code == 230

"FTP" commands for grabbing the low-hanging
fruits: • USER: Username. • PASS: Password. •
CWD: Current work directory. • LIST: List.

• ftp.request.command == "USER" •
ftp.request.command == "PASS" •
ftp.request.arg == "password"

Advanced usages examples for grabbing low-
hanging fruits: • Bruteforce signal: List failed login
attempts. • Bruteforce signal: List target
username. • Password spray signal: List targets
for a static password.

• ftp.response.code == 530 •
(ftp.response.code == 530) and
(ftp.response.arg contains "username")

• (ftp.request.command == "PASS") and
(ftp.request.arg == "password")

WireShark 49

Cleartext Protocol Analysis: HTTP

HTTP Analysis
Hypertext Transfer Protocol (HTTP) is a cleartext-based, request-response
and client-server protocol. It is the standard type of network activity to
request/serve web pages, and by default, it is not blocked by any network
perimeter. As a result of being unencrypted and the backbone of web traffic,
HTTP is one of the must-to-know protocols in traffic analysis. Following
attacks could be detected with the help of HTTP analysis:

Phishing pages

Web attacks

Data exfiltration

Command and control traffic (C2)

HTTP analysis in a nutshell:

Notes Wireshark Filter

Global search Note: HTTP2 is a revision of the HTTP protocol
for better performance and security. It supports binary data
transfer and request&response multiplexing.

• http • http2

"HTTP Request Methods" for grabbing the low-hanging fruits: •
GET • POST • Request: Listing all requests

• http.request.method ==
"GET" •
http.request.method ==

"POST" • http.request

"HTTP Response Status Codes" for grabbing the low-hanging • http.response.code ==

WireShark 50

fruits: • 200 OK: Request successful. • 301 Moved
Permanently: Resource is moved to a new URL/path
(permanently). • 302 Moved Temporarily: Resource is moved
to a new URL/path (temporarily). • 400 Bad Request: Server
didn't understand the request. • 401 Unauthorised: URL needs
authorisation (login, etc.). • 403 Forbidden: No access to the
requested URL. • 404 Not Found: Server can't find the
requested URL. • 405 Method Not Allowed: Used method is
not suitable or blocked. • 408 Request Timeout: Request look
longer than server wait time. • 500 Internal Server
Error: Request not completed, unexpected error. • 503 Service
Unavailable: Request not completed server or service is down.

200 • http.response.code
== 401 •
http.response.code ==

403 • http.response.code
== 404 •
http.response.code ==

405 • http.response.code
== 503

"HTTP Parameters" for grabbing the low-hanging fruits: • User
agent: Browser and operating system identification to a web
server application. • Request URI: Points the requested
resource from the server. • Full
*URI: Complete URI information. *URI: Uniform Resource
Identifier.

• http. user_agent

contains "nmap" •
http. request . uri

contains "admin" •
http. request . full_uri
contains "admin"

"HTTP Parameters" for grabbing the low-hanging fruits: •
Server: Server service name. • Host: Hostname of the server •
Connection: Connection status. • Line-based text
data: Cleartext data provided by the server. • HTML Form URL
Encoded: Web form information.

• http. server contains

"apache" • http. host

contains "keyword" •
http. host ==

"keyword" •
http. connection ==

"Keep-Alive" • data-text-
lines contains "keyword"

User Agent Analysis
As the adversaries use sophisticated technics to accomplish attacks, they try
to leave traces similar to natural traffic through the known and trusted
protocols.

For a security analyst, it is important to spot the anomaly signs on the bits
and pieces of the packets. The "user-agent" field is one of the great
resources for spotting anomalies in HTTP traffic.

In some cases, adversaries successfully modify the user-agent data, which
could look super natural.

A security analyst cannot rely only on the user-agent field to spot an
anomaly.

Never whitelist a user agent, even if it looks natural.

WireShark 51

User agent-based anomaly/threat detection/hunting is an additional data
source to check and is useful when there is an obvious anomaly. If you are
unsure about a value, you can conduct a web search to validate your findings
with the default and normal user-agent info (example site).

User Agent analysis in a nutshell:

Notes Wireshark Filter

Global search. • http.user_agent

Research outcomes for grabbing the low-hanging
fruits: • Different user agent information from the
same host in a short time notice. • Non-standard
and custom user agent info. • Subtle spelling
differences. ("Mozilla" is not the same as
"Mozlilla" or "Mozlila") • Audit tools info like Nmap,
Nikto, Wfuzz and sqlmap in the user agent field. •
Payload data in the user agent field.

• (http.user_agent contains "sqlmap")
or (http.user_agent contains "Nmap")
or (http.user_agent contains "Wfuzz")
or (http.user_agent contains "Nikto")

Log4j Analysis
Log4j Analysis refers to the process of examining and assessing the logs
generated by the Apache Log4j framework in order to identify security
vulnerabilities, operational issues, or other relevant insights within an
application or system.

WireShark 52

A proper investigation starts with prior research on threats and anomalies
going to be hunted. Let's review the knowns on the "Log4j" attack before
launching Wireshark.

Log4j vulnerability analysis in a nutshell:

Notes Wireshark Filters

Research outcomes for
grabbing the low-hanging
fruits: • The attack starts
with a "POST" request •
There are known cleartext
patterns: "jndi:ldap" and
"Exploit.class".

• http.request.method == "POST" • (ip contains "jndi") or (ip
contains "Exploit") • (frame contains "jndi") or (frame contains
"Exploit") • (http.user_agent contains "$") or (http.user_agent
contains "==")

Encrypted Protocol Analysis: Decrypting HTTPS

Decrypting HTTPS Traffic
When investigating web traffic, analysts often run across encrypted traffic.
This is caused by using the Hypertext Transfer Protocol Secure (HTTPS)
protocol for enhanced security against spoofing, sniffing and intercepting
attacks.

WireShark 53

HTTPS uses TLS protocol to encrypt communications, so it is impossible to
decrypt the traffic and view the transferred data without having the
encryption/decryption key pairs.

As this protocol provides a good level of security for transmitting sensitive
data, attackers and malicious websites also use HTTPS.

Therefore, a security analyst should know how to use key files to decrypt
encrypted traffic and investigate the traffic activity.

The packets will appear in different colours as the HTTP traffic is encrypted. Also,
protocol and info details (actual URL address and data returned from the server)
will not be fully visible. The first image below shows the HTTP packets encrypted
with the TLS protocol. The second and third images demonstrate filtering HTTP
packets without using a key log file.

Additional information for HTTPS :

Notes Wireshark Filter

"HTTPS Parameters" for grabbing the low-hanging fruits: •
Request: Listing all requests • TLS: Global TLS search • TLS Client
Request • TLS Server response • Local Simple Service Discovery

• http.request •
tls •
tls.handshake.type

== 1 •

WireShark 54

Protocol (SSDP) Note: SSDP is a network protocol that provides
advertisement and discovery of network services.

tls.handshake.type

== 2 • ssdp

Similar to the TCP three-way handshake process, the TLS protocol has its
handshake process.

The first two steps contain "Client Hello" and "Server Hello" messages.

The given filters show the initial hello packets in a capture file. These filters
are helpful to spot which IP addresses are involved in the TLS handshake.

Client Hello: (http.request or tls.handshake.type == 1) and !(ssdp)

Server Hello: (http.request or tls.handshake.type == 2) and !(ssdp)

WireShark 55

An encryption key log file is a text file that contains unique key pairs to
decrypt the encrypted traffic session.

These key pairs are automatically created (per session) when a connection
is established with an SSL/TLS-enabled webpage.

As these processes are all accomplished in the browser, you need to
configure your system and use a suitable browser (Chrome and Firefox
support this) to save these values as a key log file.

WireShark 56

To do this, you will need to set up an environment variable and create the
SSLKEYLOGFILE, and the browser will dump the keys to this file as you
browse the web.

SSL/TLS key pairs are created per session at the connection time, so it is
important to dump the keys during the traffic capture. Otherwise, it is not
possible to create/generate a suitable key log file to decrypt captured traffic.

You can use the "right-click" menu or "Edit --> Preferences --> Protocols --
> TLS" menu to add/remove key log files.

Adding key log files with the "right-click" menu:

Adding key log files with the "Edit --> Preferences --> Protocols -->
TLS" menu:

Viewing the traffic with/without the key log files:

WireShark 57

The above image shows that the traffic details are visible after using the key log
file. Note that the packet details and bytes pane provides the data in different
formats for investigation. Decompressed header info and HTTP2 packet details
are available after decrypting the traffic. Depending on the packet details, you
can also have the following data formats:

Frame

Decrypted TLS

Decompressed Header

Reassembled TCP

Reassembled SSL

Hunt Cleartext Credentials!
Bonus: Hunt Cleartext Credentials!

WireShark 58

Some Wireshark dissectors (FTP, HTTP, IMAP, pop and SMTP) are
programmed to extract cleartext passwords from the capture file. You can
view detected credentials using the "Tools --> Credentials" menu. This
feature works only after specific versions of Wireshark (v3.1 and later). Since
the feature works only with particular protocols, it is suggested to have
manual checks and not entirely rely on this feature to decide if there is a
cleartext credential in the traffic.

Once you use the feature, it will open a new window and provide detected
credentials. It will show the packet number, protocol, username and
additional information. This window is clickable; clicking on the packet
number will select the packet containing the password, and clicking on the
username will select the packet containing the username info. The additional
part prompts the packet number that contains the username.

Actionable Results!
Wireshark is not all about packet details; it can help you to create firewall
rules ready to implement with a couple of clicks.

You can create firewall rules by using the "Tools -->
Firewall ACL Rules" menu. Once you use this feature, it will open a new
window and provide a combination of rules (IP, port and MAC address-
based) for different purposes. Note that these rules are generated for
implementation on an outside firewall interface.

Currently, Wireshark can create rules for:

Netfilter (iptables)

Cisco IOS (standard/extended)

WireShark 59

IP Filter (ipfilter)

IPFirewall (ipfw)

Packet filter (pf)

Windows Firewall (netsh new/old format)

